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Abstract
Metabolomic age models have been proposed for the study of biological aging, how-
ever, they have not been widely validated. We aimed to assess the performance of 
newly developed and existing nuclear magnetic resonance spectroscopy (NMR) me-
tabolomic age models for prediction of chronological age (CA), mortality, and age-
related disease. Ninety-eight metabolic variables were measured in blood from nine 
UK and Finnish cohort studies (N ≈31,000 individuals, age range 24–86 years). We 
used nonlinear and penalized regression to model CA and time to all-cause mortality. 
We examined associations of four new and two previously published metabolomic age 
models, with aging risk factors and phenotypes. Within the UK Biobank (N ≈102,000), 
we tested prediction of CA, incident disease (cardiovascular disease (CVD), type-2 
diabetes mellitus, cancer, dementia, and chronic obstructive pulmonary disease), and 
all-cause mortality. Seven-fold cross-validated Pearson's r between metabolomic age 
models and CA ranged between 0.47 and 0.65 in the training cohort set (mean abso-
lute error: 8–9 years). Metabolomic age models, adjusted for CA, were associated with 
C-reactive protein, and inversely associated with glomerular filtration rate. Positively 
associated risk factors included obesity, diabetes, smoking, and physical inactivity. In 
UK Biobank, correlations of metabolomic age with CA were modest (r = 0.29–0.33), 
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1  |  INTRODUC TION

Aging can be broadly defined as a time-dependent decline of func-
tional capacity and stress resistance, associated with increased risk 
of morbidity and mortality (Burkle et  al.,  2015). The rate of aging 
may vary between individuals and groups due to both environmental 
stressors, including lifestyle, social adversity (Stringhini et al., 2018), 
and genetic factors (McDaid et al., 2017). This divergence in the rate 
of aging can lead to discrepancies between “biological” and chrono-
logical age. Markers of biological age may allow improved prediction 
of health- and life-span than chronological age itself and allow iden-
tification of vulnerable individuals (Ferrucci et al., 2018).

Recently, high throughput “omic” methods, which provide si-
multaneous quantification of sets of multiple molecular features, 
have been used to develop “biological clocks” that provide a global 
measure of changes with age at the molecular level (Rutledge 
et al., 2022). Metabolomics, the global profiling of small molecules 
with a molecular weight of <1500 Da in the body, has emerged as 
a promising analytical approach for assessing molecular changes 
with age at the population level (Panyard et  al.,  2022; Robinson 
& Lau,  2023). Overall, the rate of metabolism declines with age 
(Pontzer et  al.,  2021) and more specifically all aging hallmarks are 
expected to have detectable effects on the metabolome, including 
hallmarks of cellular aging such as nutrient sensing, mitochondrial 
dysfunction, and altered intracellular communication which directly 
relate to metabolic alterations (Lopez-Otin et  al.,  2016; Nilsson 
et al., 2019).

We previously reported a metabolomic clock based on untar-
geted mass-spectrometry (Robinson et  al.,  2020) in a cohort of 
around 2000 people, observing strong prediction of chronological 

age (CA) in internal test sets, associations between metabolomic 
age and noncommunicable disease risk factors, and enrichment 
of known aging pathways among model predictors. However, this 
clock cannot be easily applied to other datasets due the untargeted 
nature of the data used. An alternative approach is to use nuclear 
magnetic resonance spectroscopy (NMR), a metabolomic platform 
that provides more precise quantification enabling more straight-
forward application across studies. van den Akker et al. (2020) used 
the Nightingale platform of NMR-based metabolomics in blood, to 
linearly model CA in a large Dutch Biobank sample of 25,000 peo-
ple from 26 cohorts (age range 18–85), finding their metabolomic 
age measure was predictive of cardiovascular events and mortal-
ity. While their metabolomic age measure was strongly correlated 
with CA in an internal test set, internal validation may provide over-
optimistic assessments of model performance (Rodriguez-Perez 
et al., 2018) and their measure remains to be widely tested in ex-
ternal datasets.

When developing biological age clocks, two divergent ap-
proaches have emerged: training on CA, which will identify molecular 
features and pathways that change with CA but may be less sensitive 
for assessing age-related health status; and training on lifespan (i.e., 
time-to-all-cause mortality) which may more accurately reflect one's 
age-related health status, yet will also assess early-effects of dis-
ease in addition to intrinsic biological aging mechanisms (Bernabeu 
et al., 2023). In this regard, the multivariable NMR-based metabolite 
score of all-cause mortality developed by Deelen et  al. in 44,000 
people may be considered a biological age marker as it explicitly as-
sesses remaining lifespan. The model was found to have greater pre-
dictive accuracy than a model containing conventional risk factors 
(Deelen et al., 2019).

yet all metabolomic model scores predicted mortality (hazard ratios of 1.01 to 1.06/
metabolomic age year) and CVD, after adjustment for CA. While metabolomic age 
models were only moderately associated with CA in an independent population, they 
provided additional prediction of morbidity and mortality over CA itself, suggesting 
their wider applicability.

K E Y W O R D S
aging, biological age, cohort study, metabolome, metabolomics, molecular epidemiology, 
mortality, NMR, population aging
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In the present study, we aimed to develop new NMR-based 
metabolomic aging models, incorporating variable selection, non-
linear modeling, and lifespan information, within nine UK and 
Finnish cohorts of 38,000 samples covering most of adult life. 
To judge their potential utility for the assessment of differential 
metabolic aging, we assessed and compared their associations 
with aging risk factors, phenotypes, and cardiovascular disease 
and mortality incidence. Finally, to understand the reproducibil-
ity of the NMR-based metabolomic aging models, we tested their 
performance, alongside the previously published Akker et al. and 
Deelen et al. models, in the UK Biobank (UKB, N = 102,000 indi-
viduals) for the prediction of CA, mortality, and a diverse range of 
age-related diseases.

2  |  METHODS

2.1  |  Study population

The study included six British cohorts participating in the 
UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium (Shah 
et  al.,  2013): The MRC National Survey of Health and 
Development (NSHD), the Caerphilly Prospective Study (CAPS), 
the British Women's Heart and Health Study (BWHHS) (Lawlor 
et  al.,  2003), the Southhall and Brent Revisited Study (SABRE), 
the Whitehall-II study (WHII) (Marmot & Brunner, 2005), and the 
UK Collaborative Trial of Ovarian Cancer Screening Longitudinal 
Women's Cohort (UKCTOCS) (Jacobs et  al.,  2016). Two studies 
from Finland were included: The 1966 Northern Finland Birth 
Cohort (NFBC1966) and the Young Finns Study (YFS). In addi-
tion, we included the British Avon Longitudinal Study of Parents 
and Children (Boyd et  al.,  2013), which included samples from 
fathers (ALSPAC-partners) (Northstone et  al.,  2023) and moth-
ers (ALSPAC-mothers) (Fraser et  al.,  2013). ALSPAC-partners 
and ALSPAC-mothers were considered as different cohorts and 
analysed separately. Longitudinal samples were available from 
SABRE at two timepoints (SABRE1 and SABRE2) which were 
collected between 1988–1991 and 2008–2011. Follow-up sam-
ples were available from NFBC1966 at two timepoints when 
participants were 31 (NFBC1966 [31 years]) and 46 years old 
(NFBC1966 [46 years]), and longitudinal YFS samples available 
were followed-up in 2001 (YFS2001), 2007 (YFS2007) and 2011 
(YFS2011). These follow-up samples were analysed separately 
since follow-up clinics and sampling were conducted on sepa-
rate occasions. UKB study samples (N ≈102,000) were used for 
model validation in this study. Ethical approval for each cohort 
study was obtained from the Local Research Ethics Committees. 
Informed consent for the use of data collected via questionnaires 
and clinics and analysis of biological samples was obtained from 
all participants. Additionally, the current study was approved 
by the Imperial College Research Ethics Committee (Reference: 
19IC5567). Details on individual cohort characteristics are listed 
in Table S1.

2.2  |  Metabolomic data acquisition and 
preprocessing

A high throughput 1H NMR spectroscopy metabolomics platform 
(Brainshake Ltd./Nightingale Health©, Helsinki, Finland) was applied 
to fasted blood serum, except in UKB where EDTA-plasma samples 
were used for metabolomics analysis. The assay provides concen-
tration measurements for a range of metabolite variables including 
lipoprotein subclasses and individual lipids, fatty acids, glucose and 
various glycolysis precursors, ketone bodies, and amino acids. The 
NMR platform also reports on average sizes of lipoprotein parti-
cle subclasses VLDL, LDL, and HDL. Details of this platform have 
been published previously (Soininen et al., 2009; Wurtz et al., 2017). 
Two hundred and thirty-three lipid and metabolite measures were 
initially obtained from the assay platform, although some of the 
metabolic measures were frequently missing in one or more cohorts 
and were removed from subsequent analysis. Acetoacetate, pyru-
vate, glycerol, glycine, diacylglycerol, conjugated linoleic acid, and 
estimated description of fatty acid chain length were excluded as a 
result. Derived metabolic variables, including variables expressed as 
ratios or percentages were also excluded to limit data redundancy. 
Additionally, we also examined correlations of metabolic variable 
signals derived from Nightingale pre-2020 and post-2020 quan-
tification protocols available for 6446 YFS samples and excluded 
variables with Pearson's r < 0.7. The remaining 98 well quantified 
metabolic variable signals were considered in the main part of this 
study (Table S2). Multivariate outlier detection was carried out per 
study cohort, using the pcout function from R package mvoutlier. 
Since our key objective was to develop multivariable metabolomic 
models, a multivariate outlier detection method was chosen to iden-
tify and remove samples which behave uncharacteristically com-
pared the rest of the observations in the multivariate space prior to 
analysis. The method is based on principal components analysis and 
observations were considered location outliers if they have been as-
signed a weight ≤0.1, and these were subsequently removed from 
the study. Six thousand, one hundred four samples were removed as 
a result, and the number of samples after quality control was 37,888.

Additionally, to minimize bias originated from preanalytical and 
analytical differences in among the study cohort datasets, we cali-
brated the metabolic data between cohorts and visits using meth-
odology as described in Makinen et  al.  (2022) as part of the data 
preprocessing. Whitehall II (WHII) was a mixed-sex cohort in the 
middle of the age range in among our samples and was thus defined 
as the reference dataset in the calibration, with all other study co-
hort datasets were normalized against the WHII samples. During 
the cohort data calibration, a subset of samples of matching demo-
graphic characteristics, including age, sex, body mass index (BMI), 
and ethnicity were selected from both the target and the reference 
datasets, and scaling factors were then estimated per metabolic 
variable and subsequently applied to the full cohort data in the tar-
get sets. Principal component analysis was performed and the re-
sults confirm no clustering of samples by cohort could be observed 
in the first two principal components (Figure S1). The distribution of 
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nontransformed values in the 98 metabolic variables were broadly 
normal, as determined through inspection of histograms and 
quantile-quantile plots (Figure  S2 and S3). Subsequent sensitivity 
analyses, performed using log-transformed variable data, confirmed 
choice of data transformation had minimal effect on results.

2.3  |  Metabolome wide association study 
(MWAS) of age and mortality

To understand individual metabolite associations with aging, we 
first performed univariate analyses of metabolic variables with 
age and mortality. Cohort-stratified metabolome wide associa-
tion study (MWAS) of age was assessed using multiple linear 
regression adjusted for sex, BMI, and ethnicity. Age stratified 
MWAS of age were performed to examine the consistency of 
age-metabolite associations across the life-course, and these 
analyses were additionally adjusted for cohort. The follow-
ing age group strata were used: 20–35, 35–40, 40–45, 45–50, 
50–55, 55–60, 60–65, 65–70, and >70. Multiple Cox propor-
tional hazard regressions (survival R package) adjusted for CA, 
sex, and BMI were used to estimate the associations with mor-
tality, within the UKCTOCS, WHII, and SABRE cohorts where 
this information was available. Inverse variance-weighted fixed 
effect meta-analyses were used to pool study cohort estimates, 
Benjamini & Hochberg's false discovery rate (FDR) was used 
when accounting for multiple testing, with an FDR-corrected 
q < 0.05 denoting significance, and heterogeneity among the co-
horts/age group strata was assessed using Cochran's Q test and 
I2 using the meta R package. Variables with I2 values >0.75 were 
considered of high heterogeneity, whilst those with I2 values 
<0.25 were considered of low heterogeneity.

2.4  |  Multivariable predictive modeling of aging

NSHD and NFBC1966 were birth cohorts and were excluded from 
model training since study participants all share identical CA and 
would therefore likely bias the training sample set. Consequently, 
the training sample set consisted of 26,640 samples from eight 
study cohorts. To avoid problems associated with multicollinear-
ity in model training and improve model stability, a pruned variable 
set was generated from the full set of predictors using sequential 
backward stepwise selections and the variable inflation factor (VIF), 
derived using vif function in the car R package, as selection criteria. 
Starting with all 98 predictors as model inputs, in a stepwise fashion, 
the variable with the largest VIF value was removed and a new model 
was generated with one less variable than in the previous step, until 
no variables had a VIF ≥5. This yielded 24 variables (Table S2), which 
were then used as input predictors in our multivariable CA mod-
els. Pairwise Pearson's correlations of the 24 metabolic variables, 
both within the training cohort set and within UKB, are presented 
in Figure S4. Seven-fold cross validation and leave-one-cohort out 

(LOCO) validation were used to assess model stability and prediction 
performance during training.

2.4.1  |  Elastic net and MARS models

Multivariable models of study CA were constructed using elastic 
net regression (glmnet and caret R packages), and 2nd degree multi-
variate adaptive regression splines (MARS, earth, and caret R pack-
ages) models. Elastic net is a versatile penalized linear regression 
model which simultaneously performs variable selection and mod-
eling fitting. It is computationally efficient, suitable for highly cor-
related datasets, and resultant models are easily interpretable (Zou 
& Hastie, 2005). The alpha parameter in glmnet was preselected as 
0.5 in the elastic net model. The MARS approach is suitable for re-
gression problems when the relationship between predictors and 
response variables are nonlinear, as the model takes the form of 
an expansion in product spline basis functions (Friedman, 1991). A 
second-degree MARS model was used as it is suitable for modeling 
quadratic predictor-response relationships and is considered ef-
ficient when the number of model predictor variables is relatively 
small. Model variable importance scores (VIP) were evaluated in the 
training sample data using the vip R package.

2.4.2  |  Study mortality score

Instead of training the metabolic data on CA, multivariable mod-
eling was performed with survival treated as dependent variable in 
a penalized Cox regression. Study samples from WHII, SABRE, and 
UKCTOCS were used for model training, which was performed using 
the glmnet R package with alpha parameter in the elastic net model 
selected as 0.5. The 24 metabolite variables, and covariates com-
prised of age, sex, BMI, ethnicity, and cohort were included as model 
input predictors. After including only metabolic variable predictors 
and excluding contributions from other covariates, the resultant 
model was considered as the study mortality score, and these were 
subsequently scaled to the means and standard deviations of CA in 
the study cohort sample data to render score units in years.

2.4.3  |  Phenotypic aging

The phenotypic aging model represented a hybrid approach, and 
it simultaneously incorporated metabolic information of both age 
and mortality into the model training process. While this model 
was trained on sample CA, we additionally introduced a weighted 
approach to allow differential predictor shrinkage based on the 
direction and strength of their associations with mortality in our 
study samples. More specifically, the differential weights on the 
predictors were introduced as penalty factors into the glmnet 
model. Whereas a penalty factor of 0 would suggest no shrinkage, 
metabolic variables with large penalty factors would be heavily 
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penalized in the model. P-values obtained from proportional haz-
ard regressions of metabolic variables on mortality were applied as 
model penalty factors, and in addition, variables showing opposing 
direction of associations with age and mortality were assigned a 
penalty factor of 1. This approach has the effect of enhancing the 
influence of metabolic variables that are closely associated with 
mortality/ health outcome whilst still providing a direct prediction 
on sample CA.

2.4.4  |  Akker et al. and Deelen et al. models

The Akker et al. model predicts CA (in years) directly. Model weight/
coefficients were extracted from their original publication (van den 
Akker et al., 2020). The Deelen et.al model was computed using 14 
log-transformed and cohort-scaled biomarkers multiplied by their 
weight based on log-hazard ratios from meta-analyses as reported 
in Deelen et.al's publication (Deelen et al., 2019), and subsequently 
summed. The resulting score was scaled to the means and standard 
deviations of cohort CA in the study cohort sample data to render 
score units in years. Acetoacetate concentrations were missing in 
the ALSPAC-partners and CAPS study, and these values were im-
puted using k-nearest neighbors method from the impute R pack-
age for the purpose of generating the Deelen et al. and Akker et al. 
model scores. The Akker et al. model was not applied to the UKB as 
two of the specified model variables have since been discontinued 
and were not available in the UKB dataset (Bizzarri et al., 2023).

Further details of the multivariable aging models are provided in 
the Appendix S1.

2.5  |  Covariate coding of disease risk factors and 
adverse health outcomes

Hypertension was defined by doctor diagnosis in the YFS and 
UKCTOCS cohorts, by systolic blood pressure ≥140 mm Hg or doc-
tor diagnosis in the NFBC1966, ALSPAC-mothers, ALSPAC-partners, 
and SABRE cohorts, by use of antihypertensive medication or sys-
tolic blood pressure ≥140 mm Hg in the NSHD and BWHHS co-
horts and by systolic blood pressure ≥140 mm Hg only in WHII. 
Diabetes was defined by doctor diagnosis in the YFS, ALSPAC-
mothers, ALSPAC-partners, and UKCTOCS cohorts, by fasting glu-
cose ≥7 mmol/L or doctor diagnosis in the NFBC1966, NSHD and 
CAPS cohorts, by fasting glucose ≥7 mmol/L, 2-h postload glucose 
≥11.1 mmol/L or doctor diagnosis in the WHII cohort, by glycated 
hemoglobin (HbA1c) ≥ 6.6% or doctor diagnosis in the BWHHS co-
hort and by fasting glucose ≥7 mmol/L only in the SABRE cohort. 
Physical inactivity was defined as no or less than once per week 
of moderate/vigorous physical activity in most cohorts. For CAPS 
and SABRE, it was defined as the lowest tertile of calculated weekly 
physical activity estimates. Smoking was classified as never/for-
mer versus current smoker. Alcohol consumption was defined as 
no/moderate versus heavy consumption. Heavy alcohol use was 

defined in the NFBC1966, YFS, NSHD, WHII, CAPS, UKCTOCS, and 
BWHHS for men as >21 units of alcohol per week and for women 
as >14 units of alcohol per week. In ALSPAC-mothers and ALSPAC-
partners, heavy alcohol use was defined as more than 4 times per 
week. Three measures of socioeconomic position (SEP) were used 
representing the early, mid-, and later life periods: Occupation of the 
participants' fathers was classified as a manual versus nonmanual. 
Educational level was a binary indicator when comparing those 
with up to secondary-level schooling only with those with further 
or higher education. Current or last occupation of participants was 
classified as manual versus nonmanual.

Within the SABRE and UKCTOCS cohorts, coronary heart dis-
ease events were available: we have included both nonfatal and 
fatal myocardial infarction, revascularization, and unstable angina 
events in the SABRE cohort analysis, and acute coronary syndrome, 
myocardial infarction, angina, and other acute and chronic isch-
aemic heart disease events were included in the UKCTOCS analy-
ses. Both fatal and nonfatal stroke were included in the association 
analyses. All-cause mortality was available in the WHII, SABRE, and 
UKCTOCS cohorts. Within UKB, we analysed incident all-cause 
mortality and cardiovascular disease (CVD), type-2 diabetes mellitus 
(T2DM), chronic obstructive pulmonary disease (COPD), cancer, and 
dementia. CVD defined as the composite of myocardial infarction 
(MI) cases (ST-Elevation MI and Non-ST-Elevation MI) and stroke 
cases (ischaemic, intracerebral hemorrhage, and subarachnoid 
hemorrhage).

2.6  |  Analysis of metabolomic age with aging risk 
factors, phenotypes, and incident health events

Diabetes, hypertension, obesity (BMI>30), physical inactivity, cur-
rent smoking status, heavy alcohol consumption, education attain-
ment, and occupation status were included in the noncommunicable 
disease risk factor analyses, categorized as binary variables. Six 
aging-related biomarkers, including systolic (SBP) and diastolic blood 
pressure (DBP), pulse pressure, C-reactive protein (CRP), estimated 
glomerular filtration rate (eGFR), and forced expiratory volume in 
first second (FEV1) were available from multiple, but not all cohorts. 
Biomarkers were univariate scaled to facilitate cross-comparison. 
Summary of biological aging markers data by cohort are shown in 
Table  S1. For the analysis of associations between metabolomic 
aging models, aging biomarkers, and disease risk factors, linear re-
gression models were adjusted for CA, sex, and ethnicity. To avoid 
including repeated samples from the same individuals from multi-
ple follow-up visits, samples from YFS2001, YFS2007, NBFC1966 
(31 years), and SABRE2 were excluded from the risk factors analysis. 
Cox proportional hazard regressions adjusted for CA, sex, and eth-
nicity were used to estimate the associations with disease and mor-
tality incidence (survival R package), within the WHII, UKCTOCS, 
SABRE cohorts, and the UKB. Since all analyses were adjusted for 
CA, estimates can be interpreted as years of additional metabo-
lomic age relative to CA, equivalent to formulations such as “age 
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6 of 16  |     LAU et al.

acceleration” and “age gap” often used within the biological clock 
literature. A p value threshold of 0.001 was chosen for the reporting 
of statistical significance, considering multiple testing and the num-
ber of independent tests performed. All analyses were conducted 
in R version 4.

3  |  RESULTS

3.1  |  Age and lifespan associations of metabolites

Analysis of metabolic aging included 26,640 samples (aged 24–86, 
60% female) from 22,828 individuals in eight cohorts, including 728 
and 1992 participants from the SABRE and YFS cohorts respec-
tively, who were assessed in more than one follow-up. Individual 
cohort characteristics can be found in Figure 1a and Table S1.

In meta-analysis across individual cohorts and follow-ups, we 
identified large number of metabolic variables (N = 89) tested to be 
significantly associated with CA after correcting for FDR at q < 0.05 
(Figure 2a). For example, albumin, histidine (His), leucine (Leu), phos-
pholipids in small HDL (S_HDL_PL), and diameter for VLDL particles 
(VLDL_size) were found to decrease with higher CA; whilst citrate, glu-
cose, creatinine, β-hydroxybutyrate (bOHbutyrate), docosahexaenoic 
acid (DHA), omega-3 fatty acids, glutamine (Gln), tyrosine (Tyr), phe-
nylalanine (Phe), total free cholesterol (Total_FC), and sphingomyelins 
were among those found to increase with CA the most. (Figure 2a, 
Table S3).

To test for consistency in response between CA and metabolic 
variables, we performed additional metabolome-wide association 
studies stratifying by age groups, additionally adjusting for cohort 
(Figure  2b). Metabolic variables showing consistent and positive 

associations with CA across age groups included triglycerides (TG) in 
IDL, TG variables in four LDL subfractions, and cholesterols in very 
large HDL particles (XL_HDL_C and XL_HDL_FC). Conversely, VLDL_
size, albumin, and lactate were found to be consistently and negatively 
associated with CA. Although positively associated with CA through 
meta-analyses, citrate, omega-3, polyunsaturated fatty acids (PUFA), 
Apolipoprotein B (ApoB), and many cholesterols/cholesterol esters 
and lipoprotein subfraction measurements showed heterogenous as-
sociations with CA across different age ranges. Whereas the increase 
in citrate levels with age appeared to be driven by older populations, 
the increases in many cholesterols/cholesterol esters and lipoprotein 
subfraction measurements appeared to be more prominent in those 
aged <60 years (Figure 2b, Table S4).

As lifespan may be considered the most relevant phenotypic end-
point for studying aging, we examined metabolite associations with 
time to all-cause mortality in three cohorts (UKCTOCS, SABRE, and 
WHII) in which mortality data were available, consisting of 10,648 
individuals of whom 2312 died during subsequent follow-up. Cohort-
specific Cox proportional hazards regression models were adjusted for 
age, sex, BMI, and ethnicity, and fixed-effect meta-analysis was per-
formed to pool together individual cohort effect estimates (Figure S5, 
Figure 2c). Seventeen metabolic markers were found positively asso-
ciated with all-cause mortality after adjusting for false discovery rate 
(q < 0.05), which include Phe, glycoprotein acetyls (GlycA), lactate, 
bOHbutyrate, acetate, creatinine, glucose, monounsaturated fatty 
acids (MUFA), triglycerides in seven different lipoprotein subfractions 
and free cholesterol in small HDL. Forty-nine metabolic biomarkers 
were negatively associated with all-cause mortality, and PUFA, ome-
ga-6, omega-3 fatty acids, and cholesterols and cholesterol esters 
in IDL were found to be most negatively associated with mortality 
in our study sample (Figure  S5, Table  S5). Our biomarker-mortality 

F I G U R E  1 (a) Study cohorts age and sex profile (37,888 samples from 30,913 subjects, of which 26,640 samples from 22,828 subjects 
were used for model training). The 1966 Northern Finland Birth Cohort (NFBC1966) and National Survey of Health and Development 
(NSHD) are both birth cohorts, where study participants all share identical age, and were only used for risk factor association analyses. 
Cohort studies with multiple follow-ups were represented by the same color. (b) Current study workflow.
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    |  7 of 16LAU et al.

associations study results are in good agreement with results reported 
by Deelen et al.  (2019), with coefficients of mortality associations of 
individual metabolites of our analysis strongly correlated to the results 
reported (Figure  S6). Next, we examined correspondence between 
metabolites associated with age, and those associated with mortality 
in our dataset (Figure 2c), and observed that while some age-related 
metabolic changes (e.g., creatinine, Phe, and TG) contribute to mortality 
risk, at least some metabolites positively associated with CA may in fact 

be offering a protective effect against premature mortality (e.g., PUFA, 
omega-3/ omega-6 fatty acids, DHA, and cholesterol esters in IDL).

3.2  |  Multivariable modeling of metabolomic aging

Multivariable predictors for CA were trained using machine learn-
ing approaches including elastic net regression and MARS, using 

F I G U R E  2 (a) Age associations with NMR metabolome by individual cohort studies. Linear regression models were adjusted for sex, BMI, 
and ethnicity. Metabolite variables shown were found significant after FDR correction in inverse variance-weighted fixed effect meta-
analyses. (b) Meta-analysis of age-group stratified age-NMR metabolome associations. Linear regression models were first performed in the 
following age group strata: 20–35, 35–40, 40–45, 45–50, 50–55, 55–60, 60–65, 65–70, and >70. and models were adjusted for sex, BMI, 
ethnicity, and cohort. Inverse variance-weighted fixed-effect meta-analysis were then performed to pool the stratified age-group model 
estimates. Metabolic variables found significant with FDR q < 0.05 with I2 values >0.75 (high heterogeneity), or <0.25 (low heterogeneity) 
were shown. (c) Scatter plot of model regression coefficients of chronological age against mortality pooled hazard ratios. For mortality 
analysis, cohort-specific Cox proportional hazards regression models were adjusted for age, sex, BMI, and ethnicity; fixed effected meta-
analysis was performed to pool together individual cohort estimates. Significant metabolic associations against both age and mortality after 
correcting for FDR (q < 0.05) were highlighted according to whether they shared the same direction of associations: red (same direction) or 
green (opposing direction).The list of full names of the abbreviated metabolic variables can be found in Table S2.
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8 of 16  |     LAU et al.

24 of the most reliable and independent metabolic variables 
(Figure  3a). Additionally, we also trained a modified elastic net 
model on CA, which we refer to as “phenotypical aging”, by speci-
fying differential model input weights based on their directionality 
and strength of their associations with mortality in our study sam-
ples. These three models were evaluated using 7-fold cross valida-
tions (CV) and leave-one-cohort-out validations (LOCO). Albumin 
and citrate were estimated to be among the most important pre-
dictors in all three CA models (Figure  3b). The overall Pearson's 
correlation coefficients (r) between CA and the CV predicted age 
were 0.57, 0.65, and 0.47, and the correlations (r) with the LOCO 
predictions were 0.38, 0.37, and 0.23, respectively, for the elastic 
net, MARS, and phenotypic age models. (Figure S7). The published 
Akker et  al. CA model performed relatively poorly in our study 
data, giving a Pearson's r = 0.26 with CA and a mean absolute error 
(MAE) of around 18 years of age. Among the SABRE, NFBC1966, 
and YFS cohorts that included repeat metabolomic data, we com-
pared change in predicted age (δ predicted age) with change in CA 
(δ CA, i.e., years between assessments). We observed significant 
positive correlation between δ predicted age and δ CA in SABRE 
for all metabolomic age measures, except the Akker et al. model 
(Figure 3c) and general increases in median metabolomic age be-
tween follow-ups for NFBC1966 (Figure 3d) and YFS (Figure 3e). 

However, the models generally underpredicted δ metabolomic age 
relative to δ CA.

3.3  |  Metabolomic aging and 
age-related phenotypes

Next, we assessed and compared associations of the four metabo-
lomic aging models (trained on CA) and two models trained directly 
on mortality (Deelen et al. model and a new study mortality score), 
against noncommunicable disease risk factors and six common 
biomarkers of aging phenotypes, in analyses adjusted for CA, sex, 
and ethnicity. Among the risk factors, diabetes, hypertension, and 
obesity statuses were positively associated (p < 0.001) with all me-
tabolomic models, and physical inactivity was also positively associ-
ated with five of the six metabolomic scores examined (Figure 4a). 
Additionally, current smoking status and indicators of lower socio-
economic positions (low education attainment and manual occupa-
tion status) were also positively associated with the Akker et al. and 
Deelen et al. models and the study mortality score. All metabolomic 
models examined were found positively associated (p < 0.001) with 
CRP (inflammation) and negatively associated with glomerular fil-
tration rate (kidney function). Except for the Akker et al. model, all 

F I G U R E  3 (a) Scatter plots of 7-fold cross-validated predicted age against chronological age. Samples were colored by cohorts. (b) 
Variable importance (VIP) scores were estimated in the training samples based on the relative importance of predictors in the models (c–e) 
Longitudinal model predictions of changes in chronological age in Southall and Brent Revisited (SABRE), (d) 1966 Northern Finland Birth 
Cohort (NFBC1966), (e) Young Finns Study (YFS). Changes in the predicted age was plotted against changes in chronological age at follow-
up visits in SABRE, and the boxplot shows the distribution of changes in predicted age during the 15 years and 10 years intervals between 
follow-up visits in NFBC1966 and YFS.

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.14164 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 16LAU et al.

models were positively associated with SBP and DBP, and negatively 
associated with forced expiratory volume (Figure 4b).

Furthermore, we investigated the relationship of metabolomic 
age with incident health events in the cohorts with available data 
using Cox proportional regression models adjusted for CA, sex, 
and ethnicity, and fixed effect meta-analysis to combine individ-
ual cohort estimates. All metabolomic aging models trained on CA 
and lifespan were significantly associated with all-cause mortal-
ity (N event = 2312) and coronary heart disease (CHD) incidences (N 

event = 1715), and with the exception of the Akker et al. model and 
MARS, all other models were significantly associated (p < 0.001) with 
incidence of stroke (N event = 888, Figure 4c) Phenotypic aging and 
the two models of lifespan, Deelen et al. and study mortality score, 
were most strongly associated with adverse health outcomes, with 
Hazard Ratios (HRs) for all-cause mortality of 1.047 (95% Confidence 
Interval (CI): 1.038–1.056), 1.056 (95% CI: 1.049–1.062), and 1.05 
(95% CI: 1.044–1.057), respectively, per year of metabolomic age.

To understand the contribution of adiposity to the observed 
associations with metabolomic age markers, we additionally ad-
justed for BMI in sensitivity analysis. Associations with hyperten-
sion and blood pressure were attenuated for the CA trained model 
associations. However, adjusting for BMI did not significantly 
affect study models associations with adverse health outcomes 
(Figure S8).

3.4  |  Independent assessment in the UK biobank

Performance of the metabolomic aging models were tested in 
the large independent UK Biobank sample (Sudlow et  al.,  2015), 
comprising of metabolomic data from 101,524 individuals and ac-
companied by rich phenotypic and follow-up data. Models trained 
directly on CA provided modest predictive performance in UKB, 
with Pearson's r with CA of 0.29, 0.33, and 0.33 for phenotypic age, 

F I G U R E  4 (a) Associations with noncommunicable disease risk factors. Estimates represent standard deviation change in metabolomic 
age associated with exposure which have been categorized into binary variables. (b) Associations with age-related biomarkers. Estimates 
represent standard deviation (SD) change in metabolomic age associated with 1 SD unit change in biomarker levels. To avoid individuals from 
being accounted for more than once in the analysis, samples from YFS2001 and YFS2007, NFBC1966 (31 years), and SABRE2 were excluded 
in the disease risk factor analysis, and subsequently up to 28,000 samples were included. (c) Associations of metabolomic age models with 
adverse incident health events. Cox proportional regression models were adjusted for chronological age, sex, and ethnicity, and hazard ratios 
were estimated per unit of change in metabolomic age. 969, 638 and 715 deaths, respectively, in UKCTOCS, SABRE, and WHII, and 1273 
and 442 coronary heart disease events, and 707 and 181 stroke events were, respectively, recorded in the UKCTOCS and SABRE cohorts 
during the subsequent follow-up period of up to 25 years. Analyses in (a–c) were based on cohort fixed effect inverse variance weighted 
meta-analyses and linear regression models adjusted for chronological age, sex, and ethnicity. * denotes a p < 0.001 and error bars represent 
the lower and upper limits of the 95% confidence intervals.
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10 of 16  |     LAU et al.

elastic net, and MARS, respectively. In addition, both models of 
lifespan (Deelen et al. and study mortality score) also showed sig-
nificant correlations with CA (Pearson's r: 0.09–0.17, p < 1 × 10−10) 
in the UKB (Figure 5a).

Among 1108 UKB participants with longitudinal metabolomic 
data measured at baseline and at clinical follow-up 2–6 years later, 
we compared change in metabolomic age (δ metabolomic age) with 
change in CA (δ CA) for the CA trained models, categorized by years 
of follow-up. For most follow-up categories, we observed an in-
crease in median metabolomic age over follow-up, except for phe-
notypic age among those only followed-up for 2 years. The MARS 
model showed the greatest concordance between δ CA and δ me-
tabolomic age, with a median δ metabolomic age of 5 years (IQR: 
−1.1–8.3 year) among those with δ CA of 6 years (Figure 5b).

Using Cox proportional regression models adjusted for CA and 
sex, we studied associations of metabolomic aging models with 
all-cause mortality (N event = 6645), CVD (N event = 2585), T2DM (N 

event = 3850), cancer (N event = 8192), dementia (N event = 450), and 
COPD (N event = 1814) incidences in the UKB samples (Figure  5b, 
Table  S8). All metabolomic aging models tested were significantly 
associated (p < 0.001) with all-cause mortality and CVD. Effect esti-
mates for all-cause mortality ranged from a HR of 1.023 per year of 
metabolomic age (95% CI: 1.019–1.026) for the Elastic Net model to 

a HR of 1.056 (95% CI: 1.053–1.059) for the Deelen et al. model. The 
next best performing model was phenotypic age (HR: 1.039 [95% 
CI: 1.034–1.039]), which outperformed the MARS model (HR: 1.027 
[95% CI: 1.023–1.030]), which in turn outperformed the linear CA 
trained models for prediction of all-cause mortality. For instance, 
every additional year of MARS, relative to CA, was associated was 
a 3% increase in mortality risk. We also stratified our Cox regres-
sion analyses by age bands to examine whether associations with 
all-cause mortality differed among age bands. Generally, associa-
tions were stronger in the youngest age band: for those aged under 
55 years, each additional year of MARS age was associated with a 4% 
increase in mortality risk, compared to a 2% increase among those 
aged over 65 years (Figure S9).

A similar pattern of the relative associations with the metabolo-
mic age models, was observed for CVD. All models except the elastic 
net model were also found to be significantly associated with inci-
dences of T2DM and COPD. The best performing model for T2DM 
prediction was phenotypic age (HR: 1.089 [95% CI: 1.083–1.095]), 
and the Deelen et  al. model performed the best for prediction of 
COPD (HR: 1.064 [95% CI: 1.059–1.070]). Both the mortality score 
and the Deelen et  al. model showed small significant association 
with cancer incidence, while only the Deelen et al. model was asso-
ciated with dementia incidence.

F I G U R E  5 (a) Assessment of metabolomic aging model scores in UK Biobank (N total = 101,524). Pearson's correlation coefficients 
with chronological age are shown. (b) Longitudinal assessment of metabolomic aging model scores in UK Biobank. (c) Associations of 
chronological age-adjusted metabolomic age scores with adverse incident events in the UK Biobank. Cox proportional regression models 
were adjusted for sex and chronological age. Hazard ratios were estimated based on per year of metabolomic age. * denotes a p < 0.001 and 
error bars represent the lower and upper limits of the 95% confidence intervals.
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    |  11 of 16LAU et al.

4  |  DISCUSSION

In one of the largest epidemiological metabolomic studies to date, 
we have developed and tested the performance of various multivari-
able metrics to assess aging as a biological process.

In brief, metabolomics data were generated through NMR spec-
troscopy in blood serum from nine UK and Finnish cohort studies, cov-
ering an age range from 24 to 86 years. We used multivariate adaptive 
regression splines (MARS) and penalized regression models to predict 
CA and mortality. Alongside two published metabolomic prediction 
scores (“Akker et  al.” trained on CA, and “Deelen et  al.”, trained on 
all-cause mortality), we examined associations of new CA-adjusted 
metabolomic age models with aging phenotypes. These metabolo-
mic measures were associated with blood pressure parameters and 
C-reactive protein levels and inversely associated with glomerular fil-
tration rate. Risk factors associated with age-adjusted metabolomic 
age scores included obesity, diabetes, smoking, physical inactivity, 
and low education level. In independent testing in the UK Biobank, 
correlations with CA were modest, yet all metabolomic model scores 
predicted all-cause mortality and CVD.

4.1  |  Performance of different models: 
Prediction of chronological age

One criterion that a biological age estimator should fulfill is that should 
change with CA (Moskalev, 2019). When we compared our models to 
the UKB set, correlation with CA was more modest. The MARS model 
performed the best, based on model fit in the training set and associa-
tions with CA and δ CA in the UKB, indicating the value of incorporat-
ing nonlinear modeling. However, taken together, models trained on 
CA provided only moderately improved age prediction performance 
compared to models trained on lifespan. The models trained on CA 
in our study also apparently outperformed the previously published 
Akker et al. model (albeit tested in different independent populations), 
despite it being trained on a similarly sized dataset. This difference may 
be due to the additional preprocessing and variable selection steps ap-
plied, thereby increasing model stability, and potentially due to use of 
fasting samples only in our training set (i.e., not in UKB) reducing the 
influence of recent food intake on metabolite levels. Overall, as predic-
tors of CA across independent test sets, models based on NMR me-
tabolomic data (LOCO cross-validated r = 0.23–0.38, and r = 0.29–0.33 
in UKB) fall a long way short of gold-standard data types such as DNA 
methylation (Hannum et  al.,  2013; Horvath, 2013) which frequently 
show a r of greater than 0.9, although models based on NMR metabo-
lomic data perform somewhat similarly to telomere length (Bekaert 
et al., 2005; Vaiserman & Krasnienkov, 2021).

4.2  |  Prediction of mortality and disease incidence

Biological age estimators should also predict mortality better than 
CA and predict the early stages of a specific age-related disease 

(Ferrucci et  al., 2020; Levine, 2013). To test this, we assessed the 
metabolomic scores adjusted for CA, against mortality, and inci-
dence of age-related disease. All models were able to predict mor-
tality in both the training set and the UKB, with generally similar 
estimates in both populations, with the greatest effect size seen for 
the Deelen mortality estimator. The Deelen et al. model was also the 
only model that could predict incidence of all age-related diseases 
tested (CVD, T2DM, cancer, dementia, and COPD) in UKB suggest-
ing it is able to capture generalizable age-related disease susceptibil-
ity. Phenotypic age performed well in terms of mortality and disease 
prediction, while still offering comparable associations with CA in 
UKB to the models trained purely on CA. Effects sizes in predict-
ing time-to-death for the presented metabolic models, particularly 
Deelen et  al. and phenotypic aging model, were comparable to 
those of reported biological age assessments based on clinical mark-
ers, such as BioAge and PhenoAge (Kuo et al., 2021), and epigenetic 
clocks such as the Horvath, Hannum, and DNAm PhenoAge clocks 
(Hannum et al., 2013; Horvath, 2013; Levine et al., 2018), although 
smaller than the GrimAge epigenetic clock (Lu et al., 2019). However, 
the advantage of age models based on NMR metabolomic data com-
pared to other more complex indicators is that a single analysis is 
required rather than assaying multiple clinical markers and they are 
relatively cost-effective, especially compared to acquisition of epi-
genetic data. Also, our study results have shown that whilst models 
trained on CA were consistently associated with mortality and mor-
bidity after adjustment for sample age, models trained or capturing 
lifespan information, such as Deelen et al and our study mortality 
and phenotypic aging scores, will likely show significantly stronger 
effect against health outcomes.

4.3  |  Physiological interpretation

In meta-analysis, we observed generally consistent decreases with 
age in metabolic measures including albumin, a marker of liver and 
kidney function, essential amino acid histidine, the branched-chain 
amino acid leucine, phospholipids in small HDL, and the diameter 
of VLDL. Conversely, increases with age were observed in citrate, 
glucose, amino-acids creatinine and glutamine, aromatic amino acids 
tyrosine and phenylalanine, the ketone body β-hydroxybutyrate, 
omega-3 fatty acids, the degree of unsaturation of fatty acids, tri-
glycerides, and large and very large HDL. The increase in triglyceride 
levels is well-established in aging, as it reflects changes in plasma TG 
clearance, adipose tissue lipolysis, and the partitioning of fat (Spitler 
& Davies, 2020). Citrate, in addition to its key role as an energy hub 
metabolite, may be released through increased bone resorption 
(Granchi et al., 2019) and has also recently been demonstrated to be 
an independent marker of extracellular senescence in in-vitro models 
(James et al., 2018). Also, increased blood level of phenylalanine with 
age has previously been associated with dysregulated phenylalanine 
catabolism and cardiac impairment in mice (Czibik et al., 2021), and 
age-related reduction in creatinine clearance has been a key marker 
of decline in kidney function (Weinstein & Anderson, 2010). While 
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these associations have generally been previously reported (Panyard 
et al., 2022), we confirmed their relationship with age in a multico-
hort setting. Furthermore, we found that metabolic associations 
with mortality well replicated previously reported findings (Deelen 
et al., 2019). We found that some of these metabolites were related 
to mortality in a direction consistent with the relationship with age 
including creatinine, phenylalanine, and triglycerides, some age-
related metabolites had neutral or nonsignificant relationship with 
mortality, while others particularly DHA, omega-3 fatty acids, and 
the degree of unsaturation of fatty acids showed inverse relation-
ships with mortality. Given that circulating metabolites have distinct 
physiological and regulatory functions, we speculate that some me-
tabolites showing different directions of association to mortality and 
age may in fact be offering a protective/adaptive or neutral response 
to the physiological aging processes. For instance, DHA is thought to 
reduce oxidative stress and inflammation by modulating cyclooxyge-
nase, lipoxygenase, and cytochrome P450 lipid mediator activities 
(Swanson et al., 2012; Zhang et al., 2013).

The models presented trained on CA include metabolites with 
neutral and potentially adaptive metabolic effects, yet remarkably 
still provide additional prediction of mortality, suggesting the mod-
els are capturing a higher-level picture of metabolic aging, which 
overall contributes to mortality risk. While aging markers trained on 
mortality are more sensitive to aging risk factors and show improved 
prediction of age-related disease generally (Lu et al., 2019), they will 
to a greater extent capture extrinsic contributions, such as early 
effects of disease, to metabolic aging. Within this study, we found 
that metabolic age models were sensitive to classical and modifiable 
risk factors of mortality (Stringhini et al., 2017), and also related to 
clinical biomarkers of system function, including blood pressure, C-
creative protein, forced expiratory volume, and glomerular filtration 
rate. Unexpectedly, heavy alcohol use appeared to be negatively 
associated with some metabolomic age models, which may be re-
lated to the effects alcohol consumption has on metabolites such as 
citrate (Wurtz et al., 2016), illustrating a limitation of the metabolic 
modeling approach for certain risk factors.

4.4  |  Strengths and limitations

The use of multiple cohorts covering most of adult life is one of the 
strengths of this study and particularly important for analysis of me-
tabolites, which may be impacted by both endogenous factors such 
as aging and exogenous factors such as diet, since the relationship 
between age and exogenous factors (cohort effects) will likely be 
stronger within single cohorts. The use of some repeat samples, al-
though in limited number, also increases the ability to detect endog-
enous aging effects, while the use of fasting samples in our training 
set has lessened the possible influence of diet. However, the com-
parison cohort, UKB, is based on nonfasting EDTA-plasma samples, 
which may explain some of the relatively poor replication of the 
association with age in UKB. Another important limitation is that 
this study was mainly based on cross-sectional data, which is more 

susceptible to cohort effects than studies based on longitudinal data 
and does not allow assessment of trajectories of aging over time 
(Ala-Korpela et  al.,  2023). Furthermore, the use of only Northern 
European cohorts may limit generalizability to other populations. 
Nevertheless, the main strength was the use of large, independent 
training and test sets, allowing completely unbiased assessment of 
model performance.

Metabolic profiling based on NMR provides both strengths and 
limitations for development of ageing metrics in a multicohort set-
ting. The main advantage is that it is inherently quantitative, enabling 
comparable analyses of datasets across cohorts, and captures both 
small molecules and lipid metabolites. It is also high-throughput and 
cost-effective allowing the large population samples required for pre-
cise estimation of age-associations. The main limitation is the lower 
coverage of NMR compared to mass-spectrometry based methods, 
meaning that only the most abundant metabolites are detected, 
and many important and specific age-related metabolites may be 
missed. Identified metabolites such as citrate and DHA are undoubt-
edly important components of the aging metabolome, being both 
among those most strongly associated with age in previous studies 
that employed broader MS-based analysis (Darst et al., 2019; Menni 
et al., 2013). However, other key aging metabolites such as steroids, 
acylcarnitine, and tryptophan metabolites are not assayed by the cur-
rent Nightingale NMR platform. Future metabolic aging studies will 
need to combine broad, highly sensitive metabolomics with careful 
control of technical variation to allow combination across studies.

5  |  CONCLUSIONS

We have developed and tested various metabolic aging metrics in a 
very large dataset. We found that the Deelen et al. model provides 
the most consistent prediction of mortality and all age-related dis-
eases tested and is therefore a good candidate model for studies 
investigating metabolically mediated effects on lifespan. MARS, a 
nonlinear method was found to improve prediction of CA over other 
modeling techniques. Our phenotypic aging model directly predicts 
CA, while also providing good predictive ability of mortality and mul-
tiple age-related diseases and presents a good candidate for stud-
ies of overall metabolic aging. Although we have shown that NMR 
metabolomics can only provide moderate prediction of CA across 
independent test sets, the technique provides valuable informa-
tion regarding metabolic health, which is intricately linked to popu-
lation aging. We expect that future studies incorporating broader 
metabolomic analytical techniques will allow more comprehensive 
and specific assessment of metabolic aging. These models may have 
utility for large-scale epidemiological analysis, allowing assessment 
of aging risk factors and mechanisms and stratification and identifi-
cation of at-risk groups.
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in UKB. C-H.L and OR drafted the manuscript. All other coauthors 
helped with data management, supervised data collection and cu-
ration, and managed the cohort studies. All authors have read and 
contributed to the final drafting of the manuscript.
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